Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38457651

RESUMEN

Diatom bloom is characterized by a rapid increase of population density. Perception of population density and physiological responses can significantly influence their survival strategies, subsequently impacting bloom fate. The population density itself can serve as a signal, which is perceived through chemical signals or chlorophyll fluorescence signals triggered by high cell density, and their intracellular signaling mechanisms remain to be elucidated. In this study, we focused on the model diatom, Phaeodactylum tricornutum, and designed an orthogonal experiment involving varying cell densities and light conditions, to stimulate the release of chemical signals and light-induced chlorophyll fluorescence signals. Utilizing RNA-Seq and Weighted Gene Co-expression Network Analysis, we identified four gene clusters displaying density-dependent expression patterns. Within these, a potential hub gene, PtSLC24A, encoding a Na+/Ca2+ exchanger, was identified. Based on molecular genetics, cellular physiology, computational structural biology, and in situ oceanic data, we propose a potential intracellular signaling mechanism related to cell density in marine diatoms using Ca2+: upon sensing population density signals mediated by chemical cues, the membrane-bound PtSLC24A facilitates the efflux of Ca2+ to maintain specific intracellular calcium levels, allowing the transduction of intracellular density signals, subsequently regulating physiological responses, including cell apoptosis, ultimately affecting algal blooms fate. These findings shed light on the calcium-mediated intracellular signaling mechanism of marine diatoms to changing population densities, and enhances our understanding of diatom bloom dynamics and their ecological implications.


Asunto(s)
Diatomeas , Diatomeas/metabolismo , Calcio/metabolismo , Transducción de Señal , Clorofila/metabolismo , Recuento de Células
2.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38365245

RESUMEN

Increasing ocean temperatures threaten the productivity and species composition of marine diatoms. High temperature response and regulation are important for the acclimation of marine diatoms to such environments. However, the molecular mechanisms behind their acclimation to high temperature are still largely unknown. In this study, the abundance of PtCPF1 homologs (a member of the cryptochrome-photolyase family in the model diatom Phaeodactylum tricornutum) transcripts in marine phytoplankton is shown to increase with rising temperature based on Tara Oceans datasets. Moreover, the expression of PtCPF1 in P. tricornutum at high temperature (26 °C) was much higher than that at optimum temperature (20 °C). Deletion of PtCPF1 in P. tricornutum disrupted the expression of genes encoding two phytotransferrins (ISIP2A and ISIP1) and two Na+/P co-transporters (PHATRDRAFT_47667 and PHATRDRAFT_40433) at 26 °C. This further impacted the uptake of Fe and P, and eventually caused the arrest of cell division. Gene expression, Fe and P uptake, and cell division were restored by rescue with the native PtCPF1 gene. Furthermore, PtCPF1 interacts with two putative transcription factors (BolA and TF IIA) that potentially regulate the expression of genes encoding phytotransferrins and Na+/P co-transporters. To the best of our knowledge, this is the first study to reveal PtCPF1 as an essential regulator in the acclimation of marine diatoms to high temperature through the coordination of Fe and P uptake. Therefore, these findings help elucidate how marine diatoms acclimate to high temperature.


Asunto(s)
Diatomeas , Simportadores , Diatomeas/metabolismo , Hierro/metabolismo , Criptocromos/metabolismo , Temperatura , Fósforo/metabolismo , Aclimatación , Simportadores/metabolismo
3.
J Adv Res ; 2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37597746

RESUMEN

INTRODUCTION: The level of atmospheric CO2 has continuously been increasing and the resulting greenhouse effects are receiving attention globally. Carbon removal from the atmosphere occurs naturally in various ecosystems. Among them, saline environments contribute significantly to the global carbon cycle. Carbonate deposits in the sediments of salt lakes are omnipresent, and the biological effects, especially driven by halophilic microalgae and bacteria, on carbonate formation remain to be elucidated. OBJECTIVES: The present study aims to characterize the carbonates formed in saline environments and demonstrate the mechanisms underlying biological-driven CO2 removal via microalgal-bacterial consortium. METHODS: The carbonates naturally formed in saline environments were collected and analyzed. Two saline representative organisms, the photosynthetic microalga Dunaliella salina and its mutualistic halophilic bacteria Nesterenkonia sp. were isolated from the inhabiting saline environment and co-cultivated to study their biological effects on carbonates precipitation and isotopic composition. During this process, electrochemical parameters and Ca2+ flux, and expression of genes related to CaCO3 formation were analyzed. Genome sequencing and metagenomic analysis were conducted to provide molecular evidence. RESULTS: The results showed that natural saline sediments are enriched with CaCO3 and enrichment of genes related to photosynthesis and ureolysis. The co-cultivation stimulated 54.54% increase in CaCO3 precipitation and significantly promoted the absorption of external CO2 by 49.63%. A pH gradient was formed between the bacteria and algae culture, creating 150.22 mV of electronic potential, which might promote Ca2+ movement toward D. salina cells. Based on the results of lab-scale induction and 13C analysis, a theoretical calculation indicates a non-negligible amount of 0.16 and 2.3 Tg C/year carbon sequestration in China and global saline lakes, respectively. CONCLUSION: The combined effects of these two typical representative species have contributed to the carbon sequestration in saline environments, by promoting Ca2+ influx and increase of pH via microalgal and bacterial metabolic processes.

4.
Plant Physiol ; 190(4): 2295-2314, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36149329

RESUMEN

Unlike in terrestrial and freshwater ecosystems, light fields in oceans fluctuate due to both horizontal current and vertical mixing. Diatoms thrive and dominate the phytoplankton community in these fluctuating light fields. However, the molecular mechanisms that regulate diatom acclimation and adaptation to light fluctuations are poorly understood. Here, we performed transcriptome sequencing, metabolome profiling, and 13C-tracer labeling on the model diatom Phaeodactylum tricornutum. The diatom acclimated to constant light conditions was transferred to six different light conditions, including constant light (CL5d), short-term (1 h) high light (sHL1h), and short-term (1 h) and long-term (5 days) mild or severe light fluctuation conditions (mFL1h, sFL1h, mFL5d, and sFL5d) that mimicked land and ocean light levels. We identified 2,673 transcripts (25% of the total expressed genes) expressed differentially under different fluctuating light regimes. We also identified 497 transcription factors, 228 not reported previously, which exhibited higher expression under light fluctuations, including 7 with a light-sensitive PAS domain (Per-period circadian protein, Arnt-aryl hydrocarbon receptor nuclear translocator protein, Sim-single-minded protein) and 10 predicted to regulate genes related to light-harvesting complex proteins. Our data showed that prolonged preconditioning in severe light fluctuation enhanced photosynthesis in P. tricornutum under this condition, as evidenced by increased oxygen evolution accompanied by the upregulation of Rubisco and light-harvesting proteins. Furthermore, severe light fluctuation diverted the metabolic flux of assimilated carbon preferentially toward fatty acid storage over sugar and protein. Our results suggest that P. tricornutum use a series of complex and different responsive schemes in photosynthesis and carbon metabolism to optimize their growth under mild and severe light fluctuations. These insights underscore the importance of using more intense conditions when investigating the resilience of phytoplankton to light fluctuations.


Asunto(s)
Diatomeas , Diatomeas/genética , Diatomeas/metabolismo , Transcriptoma/genética , Ecosistema , Fotosíntesis/genética , Carbono/metabolismo , Luz
5.
Biotechnol Biofuels ; 14(1): 235, 2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34906223

RESUMEN

BACKGROUND: Diatoms are well known for high photosynthetic efficiency and rapid growth rate, which are not only important oceanic primary producer, but also ideal feedstock for microalgae industrialization. Their high success is mainly due to the rapid response of photosynthesis to inorganic carbon fluctuations. Thus, an in-depth understanding of the photosynthetic carbon fixation mechanism of diatoms will be of great help to microalgae-based applications. This work directed toward the analysis of whether C4 photosynthetic pathway functions in the model marine diatom Phaeodactylum tricornutum, which possesses biophysical CO2-concentrating mechanism (CCM) as well as metabolic enzymes potentially involved in C4 photosynthetic pathway. RESULTS: For P. tricornutum, differential proteome, enzyme activities and transcript abundance of carbon metabolism-related genes especially biophysical and biochemical CCM-related genes in response to different concentrations of CO2 were tracked in this study. The upregulated protein abundance of a carbonic anhydrases and a bicarbonate transporter suggested biophysical CCM activated under low CO2 (LC). The upregulation of a number of key C4-related enzymes in enzymatic activity, transcript and protein abundance under LC indicated the induction of a mitochondria-mediated CCM in P. tricornutum. Moreover, protein abundance of a number of glycolysis, tricarboxylic acid cycle, photorespiration and ornithine-urea cycle related proteins upregulated under LC, while numbers of proteins involved in the Calvin cycle and pentose phosphate pathway were downregulated. Under high CO2 (HC), protein abundance of most central carbon metabolism and photosynthesis-related proteins were upregulated. CONCLUSIONS: The proteomic and biochemical responses to different concentrations of CO2 suggested multiple carbon metabolism strategies exist in P. tricornutum. Namely, LC might induce a mitochondrial-mediated C4-like CCM and the improvement of glycolysis, tricarboxylic acid cycle, photorespiration and ornithine-urea cycle activity contribute to the energy supply and carbon and nitrogen recapture in P. tricornutum to cope with the CO2 limitation, while P. tricornutum responds to the HC environment by improving photosynthesis and central carbon metabolism activity. These findings can not only provide evidences for revealing the global picture of biophysical and biochemical CCM in P. tricornutum, but also provide target genes for further microalgal strain modification to improve carbon fixation and biomass yield in algal-based industry.

7.
BMC Plant Biol ; 21(1): 164, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33794787

RESUMEN

BACKGROUND: Diatoms contribute 20% of the global primary production and are adaptable in dynamic environments. Diatoms always bloom earlier in the annual phytoplankton succession instead of dinoflagellates. However, how diatoms acclimate to a dynamic environment, especially under changing light conditions, remains unclear. RESULTS: We compared the growth and photosynthesis under fluctuating light conditions of red tide diatom Skeletonema costatum, red tide dinoflagellate Amphidinium carterae, Prorocentrum donghaiense, Karenia mikimotoi, model diatom Phaeodactylum tricornutum, Thalassiosira pseudonana and model dinoflagellate Dinophycae Symbiodinium. Diatoms grew faster and maintained a consistently higher level of photosynthesis. Diatoms were sensitive to the specific inhibitor of Proton Gradient Regulation 5 (PGR5) depending photosynthetic electron flow, which is a crucial mechanism to protect their photosynthetic apparatus under fluctuating light. In contrast, the dinoflagellates were not sensitive to this inhibitor. Therefore, we investigate how PGR5 functions under light fluctuations in the model diatom P. tricornutum by knocking down and overexpressing PGR5. Overexpression of PGR5 reduced the photosystem I acceptor side limitation (Y (NA)) and increased growth rate under severely fluctuating light in contrast to the knockdown of PGR5. CONCLUSION: Diatoms acclimatize to fluctuating light conditions better than dinoflagellates. PGR5 in diatoms can regulate their photosynthetic electron flow and accelerate their growth under severe light fluctuation, supporting fast biomass accumulation under dynamic environments in pioneer blooms.


Asunto(s)
Diatomeas/fisiología , Dinoflagelados/fisiología , Regulación de la Expresión Génica/fisiología , Luz , Fotosíntesis , Aclimatación/genética , Diatomeas/genética , Diatomeas/crecimiento & desarrollo , Dinoflagelados/genética , Dinoflagelados/crecimiento & desarrollo
8.
Plant J ; 103(5): 1850-1857, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32526813

RESUMEN

Proton gradient regulation 5-like photosynthetic phenotype 1 (PGRL1)-dependent cyclic electron transport around photosystem I (PSI) plays important roles in the response to different stresses, including high light. Although the function of PGRL1 in higher plants and green algae has been thoroughly investigated, little information is available on the molecular mechanism of PGRL1 in diatoms. We created PGRL1 overexpression and knockdown transformants of Phaeodactylum tricornutum, the diatom model species, and investigated the impact on growth and photosynthesis under constant and fluctuating light conditions. PGRL1 over-accumulation resulted in significant decreases in growth rate and apparent photosystem II (PSII) activity and led to an opposing change of apparent PSII activity when turning to high light, demonstrating a similar influence on photosynthesis as a PSII inhibitor. Our results suggested that PGRL1 overexpression can reduce the apparent efficiency of PSII and inhibit growth in P. tricornutum. These findings provide physiological evidence that the accumulation of PGRL1 mainly functions around PSII instead of PSI.


Asunto(s)
Proteínas Algáceas/fisiología , Diatomeas/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Proteínas Algáceas/metabolismo , Proteínas Algáceas/efectos de la radiación , Diatomeas/crecimiento & desarrollo , Regulación de la Expresión Génica , Luz , Complejo de Proteína del Fotosistema I/metabolismo , Especies Reactivas de Oxígeno/metabolismo
9.
Microb Cell Fact ; 18(1): 161, 2019 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-31547820

RESUMEN

BACKGROUND: Numerous studies have shown that stress induction and genetic engineering can effectively increase lipid accumulation, but lead to a decrease of growth in the majority of microalgae. We previously found that elevated CO2 concentration increased lipid productivity as well as growth in Phaeodactylum tricornutum, along with an enhancement of the oxidative pentose phosphate pathway (OPPP) activity. The purpose of this work directed toward the verification of the critical role of glucose-6-phosphate dehydrogenase (G6PDH), the rate-limiting enzyme in the OPPP, in lipid accumulation in P. tricornutum and its simultaneous rapid growth rate under high-CO2 (0.15%) cultivation. RESULTS: In this study, G6PDH was identified as a target for algal strain improvement, wherein G6PDH gene was successfully overexpressed and antisense knockdown in P. tricornutum, and systematic comparisons of the photosynthesis performance, algal growth, lipid content, fatty acid profiles, NADPH production, G6PDH activity and transcriptional abundance were performed. The results showed that, due to the enhanced G6PDH activity, transcriptional abundance and NAPDH production, overexpression of G6PDH accompanied by high-CO2 cultivation resulted in a much higher of both lipid content and growth in P. tricornutum, while knockdown of G6PDH greatly decreased algal growth as well as lipid accumulation. In addition, the total proportions of saturated and unsaturated fatty acid, especially the polyunsaturated fatty acid eicosapentaenoic acid (EPA; C20:5, n-3), were highly increased in high-CO2 cultivated G6PDH overexpressed strains. CONCLUSIONS: The successful of overexpression and antisense knockdown of G6PDH well demonstrated the positive influence of G6PDH on algal growth and lipid accumulation in P. tricornutum. The improvement of algal growth, lipid content as well as polyunsaturated fatty acids in high-CO2 cultivated G6PDH overexpressed P. tricornutum suggested this G6PDH overexpression-high CO2 cultivation pattern provides an efficient and economical route for algal strain improvement to develop algal-based biodiesel production.


Asunto(s)
Dióxido de Carbono/metabolismo , Diatomeas/crecimiento & desarrollo , Diatomeas/genética , Ácidos Grasos/metabolismo , Glucosafosfato Deshidrogenasa/genética , Dióxido de Carbono/análisis , Diatomeas/metabolismo , Ingeniería Genética , Glucosafosfato Deshidrogenasa/metabolismo , Microalgas/genética , Microalgas/crecimiento & desarrollo , Microalgas/metabolismo , NADP/metabolismo , Vía de Pentosa Fosfato , Fotosíntesis
10.
BMC Biotechnol ; 19(1): 53, 2019 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-31349823

RESUMEN

BACKGROUND: Increasing CO2 emissions have resulted in ocean acidification, affecting marine plant photosynthesis and changing the nutrient composition of marine ecosystems. The physiological and biochemical processes of marine phytoplankton in response to ocean acidification have been reported, but have been mainly focused on growth and photosynthetic physiology. To acquire a thorough knowledge of the molecular regulation mechanisms, model species with clear genetic background should be selected for systematic study. Phaeodactylum tricornutum is a pennate diatom with the characteristics of small genome size, short generation cycle, and easy to transform. Furthermore, the genome of P. tricornutum has been completely sequenced. RESULTS AND DISCUSSION: In this study, P. tricornutum was cultured at high and normal CO2 concentrations. Cell composition changes during culture time were investigated. The 13C isotope tracing technique was used to determine fractional labeling enrichments for the main cellular components. The results suggested that when lipid content increased significantly under high CO2 conditions, total protein and soluble sugar contents decreased. The 13C labeling experiment indicated that the C skeleton needed for fatty acid C chain elongation in lipid synthesis under high CO2 conditions is not mainly derived from NaHCO3 (carbon fixed by photosynthesis). CONCLUSION: This study indicated that breakdown of intracellular protein and soluble sugar provide C skeleton for lipid synthesis under high CO2 concentration.


Asunto(s)
Proteínas Algáceas/metabolismo , Dióxido de Carbono/metabolismo , Carbono/metabolismo , Diatomeas/metabolismo , Lípidos/biosíntesis , Azúcares/metabolismo , Isótopos de Carbono/metabolismo , Diatomeas/genética , Diatomeas/fisiología , Ecosistema , Concentración de Iones de Hidrógeno , Espacio Intracelular/metabolismo , Lipogénesis , Océanos y Mares , Fotosíntesis , Agua de Mar/química , Solubilidad , Azúcares/química
11.
J Phycol ; 54(1): 34-43, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29159944

RESUMEN

Iron is a limiting factor that controls the phytoplankton biomass in the modern ocean, and iron fertilization of the ocean could lead to blooms dominated by diatoms. Thus, iron plays an important role in controlling the distribution of diatoms. In this study, we measured the growth rate and photosynthetic activity of the model diatom Phaeodactylum tricornutum cultured under different iron concentrations and found that it grew more rapidly and had a much higher photosynthetic efficiency under higher iron concentrations. In order to explore the unique mechanism of the response of diatoms to iron, a proteomic analysis was carried out, and the results indicated that iron promotes the Calvin cycle of P. tricornutum. Diatoms can tolerate the pressure of iron limitation by replacing iron-rich proteins with flavodoxin, and so on. Moreover, we found that the photosystem I (PSI) activity of iron-limited algae that were treated by N',N',N',N'-tetramethyl-p-phenylenediamine (TMPD) was increased significantly. As TMPD plays the role of a cytochrome b6 /f complex that transfers electrons from photosystem II to PSI, the cytochrome b6 /f complex is the key to photosynthesis regulation. Iron could influence the growth of P. tricornutum by regulating its biosynthesis. All of the results suggest that iron might affect the growth of diatoms through the Calvin cycle and the cytochrome b6 /f complex.


Asunto(s)
Diatomeas/crecimiento & desarrollo , Hierro/metabolismo , Fotosíntesis , Fitoplancton/crecimiento & desarrollo , Cromatografía Liquida , Diatomeas/metabolismo , Relación Dosis-Respuesta a Droga , Hierro/administración & dosificación , Deficiencias de Hierro , Fitoplancton/metabolismo , Espectrometría de Masas en Tándem
12.
Biotechnol Biofuels ; 8: 78, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26052345

RESUMEN

BACKGROUND: Rising CO2 concentration was reported to increase phytoplankton growth rate as well as lipid productivity. This has raised questions regarding the NADPH supply for high lipid synthesis as well as rapid growth of algal cells. RESULTS: In this study, growth, lipid content, photosynthetic performance, the activity, and expression of key enzymes in Calvin cycle and oxidative pentose phosphate pathway (OPPP) were analyzed in the marine diatom Phaeodactylum tricornutum under three different CO2 concentrations (low CO2 (0.015 %), mid CO2 (atmospheric, 0.035 %) and high CO2 (0.15 %)). Both the growth rate and lipid content of P. tricornutum increased significantly under the high CO2 concentration. Enzyme activity and mRNA expression of three Calvin cycle-related enzymes (Rubisco, 3-phosphoglyceric phosphokinase (PGK), phosphoribulokinase (PRK)) were also increased under high CO2 cultivation, which suggested the enhancement of Calvin cycle activity. This may account for the observed rapid growth rate. In addition, high activity and mRNA expression of G6PDH and 6PGDH, which produce NADPH through OPPP, were observed in high CO2 cultured cells. These results indicate OPPP was enhanced and might play an important role in lipid synthesis under high CO2 concentration. CONCLUSIONS: The oxidative pentose phosphate pathway may participate in the lipid accumulation in rapid-growth P. tricornutum cells in high CO2 concentration.

13.
Plant Cell Physiol ; 55(8): 1395-403, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24793748

RESUMEN

Studies have demonstrated that photosynthetic limitations and starch degradation are responses to stress; however, the relationship between the two is seldom described in detail. In this article, the effects of salt stress on photosynthesis, the levels of NADPH and total RNA, the starch content and the activities of glucose-6-phosphate dehydrogenase (G6PDH) and ribulose-5-phosphate kinase (RPK) were evaluated. In thalli that underwent salt treatments, the cyclic electron flow through PSI showed greater stress tolerance than the flow through PSII. Even though the linear electron flow was suppressed by DCMU, the cyclic electron flow still operated. The electron transport rate I (ETRI) increased as the salinity increased when the thalli recovered in seawater containing DCMU. These results suggested that PSI receives electrons from a source other than PSII. Furthermore, the starch content and RPK activity decreased, while the content of NADPH and total RNA, and the activity of G6PDH increased under salt stress. Soluble sugar from starch degradation may enter the oxidative pentose phosphate pathway (OPPP) to produce NADPH and ribose 5-phosphate. Data analysis suggests that NADPH provides electrons for PSI in Ulva prolifera during salt stress, the OPPP participates in the stress response and total RNA is synthesized in excess to assist recovery.


Asunto(s)
NADP/metabolismo , Vía de Pentosa Fosfato/fisiología , Complejo de Proteína del Fotosistema I/metabolismo , Estrés Fisiológico , Ulva/fisiología , Carbohidratos/análisis , Transporte de Electrón , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema II/metabolismo , Salinidad , Sales (Química) , Almidón/análisis , Ulva/genética
14.
Sci Rep ; 4: 3958, 2014 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-24492482

RESUMEN

Phaeodactylum tricornutum Bohlin is an ideal model diatom; its complete genome is known, and it is an important economic microalgae. Although silicon is not required in laboratory and factory culture of this species, previous studies have shown that silicon starvation can lead to differential expression of miRNAs. The role that silicon plays in P. tricornutum growth in nature is poorly understood. In this study, we compared the growth rate of silicon starved P. tricornutum with that of normal cultured cells under different culture conditions. Pigment analysis, photosynthesis measurement, lipid analysis, and proteomic analysis showed that silicon plays an important role in P. tricornutum growth and that its presence allows the organism to grow well under green light and low temperature.


Asunto(s)
Diatomeas/crecimiento & desarrollo , Diatomeas/metabolismo , Metabolismo Energético/fisiología , Silicio/metabolismo , Proteínas Bacterianas/biosíntesis , Puntos de Control del Ciclo Celular/genética , Clorofila/metabolismo , Clorofila A , Frío , Luz , Lípidos/análisis , MicroARNs/biosíntesis , Proteómica , Transducción de Señal , Xantófilas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...